I posted this a while ago as a follow-up to a Critical Thinking page. See how you do.

**Say if the following are valid or invalid arguments: **

1. Socrates is a philosopher.

All philosophers are poor.

So Socrates is poor.

2. Whenever Anil is here, Kumar is also here.

Anil is not here.

So Kumar is not here.

3. Most drug addicts are depressed people.

Most depressed people are lonely.

So most drug addicts are lonely.

4. Nothing that is cheap is good.

So nothing that is good is cheap.

5. If there is an earthquake, the detector will send a message.

No message has been sent.

So there was no earthquake.

6. John said that everyone loves Mary.

Nothing that John has said is true.

So nobody loves Mary.

7. If there is life on Mars, then Mars contains water.

If Mars has ice, it contains water.

There is ice on Mars.

So there is life on Mars.

8. All roses are flowers.

Some flowers fade quickly.

So some roses fade quickly.

9. Our government should either spend less or raise taxes.

Raising taxes is impossible.

So our government should spend less.

10. If John is guilty, so is Peter.

If Peter is not guilty, Jeremy is.

So if John is not guilty, Jeremy is.

**And, as a test of your understanding of probability, try the following rather famous puzzle. **

Imagine that you are a contestant on a television game show. You are shown three large doors. Behind one of the doors is a new car, and behind each of the other two is a goat. To win the car, you simply have to choose which door it is behind. When you choose a door, the host of the show opens one of the doors you have not chosen, and shows you that there is a goat behind it. You are then given a choice; you may stick with your original choice, or you may switch to the remaining closed door.

What should you do to maximize your chances of winning the car? Think about it for a while, and when you have decided, read the two arguments below and decide which is right.

• Argument 1: Suppose you choose door number 1. The probability that the car is behind door 1 is initially 1/3 (since there are three doors, and the car has an equal chance of being behind each). Then suppose the host opens door number 3 and shows you that there is a goat behind it. We then need to calculate a conditional probability–the probability that the car is behind door 1, given that there is a goat behind door 3. Since there are only two doors left, and there is an equal chance that the car is behind each of them, this probability is 1/2. But similarly, the probability that the car is behind door 2, given that there is a goat behind door three, is also 1/2. So whether you stick with door 1 or switch to door 2, your chance of winning is 1/2. So it really makes no difference whether you switch or not.

• Argument 2: Suppose you choose door number 1. There are three possibilities; either the car is behind door 1, or door 2, or door 3. Each of these possibilities has the same probability (1/3). In each of the three cases, consider which door the host will open. If the car is behind door 1, the host could open either door 2 or door 3. In this case, if you stick with your original choice you win the car, but if you switch to the remaining door you lose. If the car is behind door 2, the host will open door 3. In this case, if you stick with your original choice you lose, but if you switch, you win. Finally, if the car is behind door 3, the host will open door 2. Again, if you stick with your original choice you lose, but if you switch, you win. Remember that each of the three possibilities has a probability of 1/3, and note that they are mutually exclusive (the car is only behind one door). If you switch, you will win in two cases out of three (probability 2/3), but if you stick you will only win in one case out of three (probability 1/3). So you should switch doors, since it doubles your chance of winning.

Which argument do you think is right, Argument 1 or Argument 2?

I’ll have a pop Spoiler alert if people don’t want to see answers. I’m a philosophy graduate, so there’s lots of potential to embarrass myself here.

1. Valid

2. Invalid, Kumar could be there at other times.

3. Invalid, drug addicts could be group of depressed people who aren’y lonely.

4. Invalid, good stuff can also be bad.

5. Invalid, there could have been an earthquake before the detector was installed.

6. Invalid, some people could still love Mary.

7. Invalid, but

‘If Mars contains water, then there is life on Mars.

If Mars has ice, it contains water.

There is ice on Mars.

So there is life on Mars.’

would be okay.

8. Invalid, roses might be a subgroup that don’t.

9. I’m not sure, I think should is being used slightly differently in both senses.

10. Not sure again, depends what you mean by ‘so is’. Probably invalid.

LikeLike

Hi Timothy,

Quite a few wrong. I’ll give the answers next week, or email me if you can’t wait.

LikeLike

I’ll wait, mull it over all week and drive myself half crazy trying to figure out where I was wrong. ^^

LikeLike

Also, a joke:

Three logicians walk into a bar.

Bartender: Does everybody want a drink?

Logician one: I don’t know.

Logician two: I don’t know.

Logician three: Yes.

LikeLiked by 1 person

Of course! 🙂

LikeLike

Reblogged this on The Echo Chamber.

LikeLike

agh most of these were not googled :):

1. valid

2. invalid

3. invalid

4. valid

5. valid

6. invalid

7. valid

8. invalid

9. valid

10. invalid

switch doors

LikeLike

3 wrong Mura. First 6 right.

LikeLike

A fantastic activity. I’ve just printed out a few copies with the arguments and I’m going to ask my students what they think. Thanks for sharing this.

LikeLike

When erudite cookies like Geoff refer to logical fallacies and I get lost, this is where I go: https://yourlogicalfallacyis.com/.

It has rather nice wallposters (free) that your students might like, Hana.

LikeLike

Perhaps readers would like to have a go at this.

Both of the premises in this argument are false.

Leprechauns exist.

Therefore Leprechauns exist.

LikeLiked by 1 person

Hi Patrick,

This is a version of Russell’s famous “visiting card” paradox, itself a version going back to Socrates, and influential in Wittgenstein’s change of heart (sic). I myself shocked my mother when I was 9 when I told her “There’s something odd about saying “I’m a liar, I never tell the truth””. Russell’s visiting card, passed around Bloomsbury in the 20s and 30s, had on one side the words “The statement on the other side of this card is false.” Turn the card over and you read “The statement on the other side of this card is true”. These paradoxes were part of the reason the logical positivists charged down a blind alley trying to purify language, and they were partly addressed by Tarski’s work.

LikeLike